New neurotechnologies for the diagnosis and modulation of brain dysfunctions
More details
Hide details
Submission date: 2014-05-05
Acceptance date: 2014-05-06
Online publication date: 2014-07-02
Publication date: 2014-07-02
Health Psychology Report 2014;2(2):73–82
This is a major review article to acquaint psychologists with new neurotechnologies for the diagnosis and modulation of brain abnormalities. While psychometrics measures brain functions in terms of behavioral parameters, a recently emerged branch of neuroscience called neurometrics relies on measuring the electrophysiological parameters of brain functioning. There are two approaches in neurometrics. The first relies on the spectral characteristics of spontaneous electroencephalograms (EEG) and measures deviations from normality in EEG recorded in the resting state. The second approach relies on event-related potentials (ERPs) that measure the electrical responses of the brain to stimuli and actions in behavioral tasks. The present study reviews recent research on the application of ERPs for the discrimination of different types of brain dysfunction. Attention deficit-hyperactivity disorder (ADHD) is used as an example. It is shown that the diagnostic power of ERPs is enhanced by the recent emergence of new methods of analysis, such as independent component analysis (ICA) and low resolution electromagnetic tomography (LORETA).
Albrecht, B., Brandeis, D., Uebel, H., Heinrich, H., Mueller, U. C., Hasselhorn, M., Steinhausen, H. C.,Rothenberger, A., & Banaschewski, T. (2008). Action monitoring in boys with attention-deficit/hyperactivity disorder, their nonaffected siblings, and normal control subjects: evidence for an endophenotype. Biological Psychiatry, 64, 615-625.
Barkley, R. A. (1997). Behavioral inhibition, sustained attention, and executive functions: Constructing a unifying theory of ADHD. Psychological Bulletin, 121, 65-94.
Bresnahan, S., Anderson, J., & Barry, R. (1999). Age- related changes in quantitative EEG in attention deficit disorder. Biological Psychiatry, 46, 1690-1697.
Buchsbaum, M., & Wender, P. (1973). Averages evoked responses in normal and minimally brain dysfunctioned children treated with amphetamine. Archives of General Psychiatry, 29, 764-770.
Castellanos, F. X. (2002). Anatomic magnetic resonance imaging studies of attention-deficit/hyperactivity disorder. Dialogues Clinical Neuroscience, 4, 444-448.
Castellanos, F. X., & Tannock, R. (2002). Neuroscience of attention-deficit/hyperactivity disorder: the search for endophenotypes. Nature Reviews Neuroscience, 3, 617-628.
Clarke, A., Barry, R., McCarthy, R., & Selikowitz, M. (1998). EEG analysis in Attention-Deficit/Hyperactivity Disorder: a comparative study of two subtypes. Psychiatry Research, 81, 19-29.
Clarke, A. R., Barry, R. J., McCarthy, R., & Selikowitz, M. (2001). Excess beta in children with attention-deficit/hyperactivity disorder: an atypical electrophysiological group. Psychiatry Research, 103, 205-218.
Clarke, A. R., Barry, R. J., Dupuy, F., Heckel, L., McCarthy, R., Selikowitz, M., & Johnstone, S. (2011). Behavioural differences between EEG-defined subgroups of children with attention-deficit/hyperactivity disorder. Clinical Neurophysiology, 122, 1333-1341.
Clarke, A. R., Barry, R. J., Dupuy, F. E., McCarthy, R., Selikowitz, M., & Johnstone, S.J. (2013). Excess beta activity in the EEG of children with attention-deficit/hyperactivity disorder: a disorder of arousal? International Journal of Psychophysiology, 89, 314-319.
Conzelmann, A., Gerdes, A. B., Mucha, R. F., Weyers, P., Lesch, K. P., Bähne, C. G., Fallgatter, A. J., Renner, T. J., Warnke, A., Romanos, M., & Pauli, P. (2014). Autonomic hypoactivity in boys with attention-deficit/hyperactivity disorder and the influence of methylphenidate. World Journal of Biological Psychiatry, 15, 56-65.
Cook, I. A., O’Hara, R., Uijtdehaage, S. H., Mandelkern, M., & Leuchter, A. F (1998). Assessing the accuracy of topographic EEG mapping for determining local brain function. Electroencephalography and Clinical Neurophysiology, 107, 408-414.
Chabot, R., & Serfontein, G. (1996). Quantitative electroencephalographic profiles of children with attention deficit disorder. Biological Psychiatry, 40, 951-963.
Duane, D. D. (2004). Increased frequency of rolandic spikes in ADHD children. Epilepsia, 45, 564-565.
Gordon, E., Cooper, N., Rennie, C., Hermens, D., & Williams, L. M. (2006). Integrative neuroscience: the role of a standardized database. Clinical Electroencephalography and Neuroscience, 6, 64-75.
Holcomb, P. J., Ackerman, P. T., & Dykman, R. A. (1985). Cognitive event-related brain potentials in children with attention and reading deficits. Psychophysiology, 22, 656-667.
Janzen, T., Graap, K., Stephanson, S., Marshall, W., & Fitzsimmons, G. (1995). Differences in baseline EEG measures for ADD and normally achieving preadolescent males. Biofeedback Self-Regulation, 20, 65-82.
John, E. R. (1990). Principles of Neurometrics. American Journal of EEG Technology, 30, 251-266.
John, E. R. (1977). Neurometrics: Clinical Applications of Quantitative Electrophysiology. New Jersey: Lawrence Erlbaum Associates.
Jonkman, L. M., Kemner, C., Verbaten, M. N., Koelega, H. S., Camfferman, G., van der Gaag, R. J., Buitelaar, J. K., & van Engeland, H. (1997). Event-related potentials and performance of attention-deficit hyperactivity disorder: Children and normal controls in auditory and visual selective attention tasks. Biological Psychiatry, 41, 595-611.
Johnstone, S. J., & Barry, R. J. (1996). Auditory event- related potentials to a two-tone discrimination paradigm in attention deficit hyperactivity disorder. Psychiatry Research, 64, 179-192.
Kieling, C., Goncalves, R. R., Tannock, R., & Castellanos, F. X. (2008). Neurobiology of attention deficit hyperactivity disorder. Child Adolescent Psychiatric Clinics North America, 17, 285-307.
Klorman, R., Salzman, L. F., Pass, H. L., Borgstedt, A. D., & Dainer, K.B. (1979). Effects of methylphenidate on hyperactive children’s evoked responses during passive and active attention. Psychophysiology, 16, 23-29.
Kopp, B., Mattler, U., Goertz, R., & Rist, F. (1996). N2, P3 and the lateralized readiness potential in a nogo task involving selective response priming. Electroencephalography Clinical Neurophysiology, 99, 19-27.
Krause, K. H., Dresel, S. H., Krause, J., la Fougere, C., & Ackenheil, M. (2003). The dopamine transporter and neuroimaging in attention deficit hyperactivity disorder. Neuroscience & Biobehavioral Reviews, 27, 605-613.
Kropotov, I. D. (2009). Quantitative EEG, event related potentials and neurotherapy. San Diego: Academic Press, Elsevier.
Kropotov, I. D. (2011). Brain correlates of comparison with memory trace: Independent component analysis of event related potentials, ERPs. Key Note lecture given during 14th International Congress of the Polish Neuropsychological Society. 24-25 October, Cracow, Poland.
Kropotov, I. D. (2014). Neuromarkers of peak performance. Doctor honoris causa Lecture. Gdansk: University of Physical Education and Sport, 8 January 2014, Gdansk, Poland.
Kropotov, I. D., Grin-Yatsenko, V. A., Ponomarev, V. A., Chutko, L. S., Yakovenko, E. A., & Nikishena, I. S. (2005). ERPs correlates of EEG relative beta training in ADHD children. International Journal of Psychophysiology, 55, 23-34.
Kropotov, I. D., & Mueller, A. (2009). What can event related potentials contribute to neuropsychology. Acta Neuropsychologica, 7, 169-181.
Kropotov, I. D., Chutko, L. S., Iakovenko, V. A., & Grin’-Iatsenko, V. A. (2002). Transcranial micro- polarization in the treatment of ADHD in children and adolescents. Zhurnal nevrologii i psikhiatrii imeni S.S. Korsakova, 102, 26-28.
Makeig, S., Bell, A. J., Jung, T.-P., & Sejnowski, T. J. (1996). Independent component analysis of electroencephalographic data. Advances in Neural Information Processing Systems, 8, 145-151.
Matousek, M., & Petersen, I. (1973). Frequency analysis of the EEG in normal children and normal adolescents. In: P. Kellaway & I. Petersen (eds.). Automation of clinical electroencephalography (pp. 75-102). New York: Raven.
Matousek, M., Rasmussen, P., & Gilberg, C. (1984). EEG frequency analysis in children with so-called minimal brain dysfunction and related disorders. Advances in Biological Psychiatry, 15, 102-108.
Monastra, V. J., Lubar, J., Linden, M., Van Deusen, P., Green, G., Wing, W., Phillips, A., & Fenger, T. (1999). Assessing attention deficit hyperactivity disorder via quantitative electroencephalography: an initial validation study. Neuropsychology, 13, 424-433.
Lubar, J. F. (1991). Discourse on the development of EEG diagnostics and biofeedback for attention-deficit/hyperactivity disorders. Biofeedback and Self- Regulation, 16, 201-225.
Overtoom, C. C. E., Verbaten, M. N., Kemner, C., Kenemans, J. L., van Engeland, H., Buitelaar, J. K., Camfferman, G., & Koelega, H.S. (1998). Associations between event-related potentials and measures of attention and inhibition in the continuous performance task in children with ADHD and normal controls. Journal of American Academy of Child & Adolescent Psychiatry, 37, 977-985.
Pascual-Marqui, R. D. (1999). Review of methods for solving the EEG inverse problem. International Journal of Bioelectromagnetism, 1, 75-86.
Pąchalska, M., Kaczmarek, B. L. J., & Kropotov, J. D. (2014). Neuropsychologia kliniczna: od teorii do praktyki [Clinical Neuropsychology: from theory to practice]. Warszawa: Wydawnictwo Naukowe PWN.
Pąchalska, M., Kropotov, I. D., Mańko, G., Lipowska, M., Rasmus, A., Łukaszewska, B., Bogdanowicz, M., & Mirski, A. (2012). Evaluation of a neurotherapy program for a child with ADHD with Benign Partial Epilepsy with Rolandic Spikes (BPERS) using event-related potentials. Medical Science Monitor, 18, CS94-104.
Pliszka, S. R., Liotti, M., & Woldorff, M. G. (2000). Inhibitory control in children with attention-deficit/hyperactivity disorder: Event-related potentials identify the processing component and timing of an impaired right-frontal response-inhibition mechanism. Biological Psychiatry, 48, 238-246.
Robaey, P., Breton, F., Dugas, M., & Renault, B. (1992). An event-related potential study of controlled and automatic processes in 6-8-year-old boys with attention deficit hyperactivity disorder. Electroencephalography Clinical Neurophysiology, 82, 330-340.
Saletu, B., Saletu, M., & Itil, T. (1973). The relationship between psychopathology and evoked responses before, during and after psychotropic drug treatment. Biological Psychiatry, 6, 45-71.
Satterfield, J. H., Cantwell, D. P., Lesser, L. I., & Podosin, R. L. (1972). Physiological studies of the hyperkinetic child. American Journal of Psychiatry, 128, 102-108.
Sergeant, J. A. (2005). Modeling attention-defi cit/hyperactivitydisorder: a critical appraisal of the cognitive-energetic model. Biological Psychiatry, 57, 1248-1255.
Socanski, D., Herigstad, A., Thomsen, P. H., Dag, A., & Larsen, T. K. (2010). Epileptiform abnormalities in children diagnosed with attention deficit/hyperactivity disorder. Epilepsy & Behavior, 19, 483-486.
Sterman, M. B. (1996). Physiological origins and functional correlates of EEG rhythmic activities: Implications for self-regulation. Biofeedback and Self-Regulation, 21, 3-33.
Strehl, U., Leins, U., Goth, G., Klinger, C., Hinterberger, T., & Birbaumer, N. (2006). Self-regulation of slow cortical potentials: a new treatment for children with attention-deficit/hyperactivity disorder. Pediatrics, 118, 1530-1540.
Thatcher, R. W., Moore, N., John, E. R., Duffy, F., Hughes, J. R., & Krieger, M. (1999). QEEG and traumatic brain injury: rebuttal of the American Academy of Neurology 1997 report by the EEG and Clinical Neuroscience Society. Clinical Electroencephalography, 30, 94-98.
Thatcher, R. W. (1998). EEG normative databases and EEG biofeedback. Journal of Neurotherapy, 2, 8-39.
Vartanyan, G. A., Gal’dinov, G. V., Shklyaruk, S. P., Kaufman, D. A., Nikolaenko, N. N., Akimova, I. M.,.
Trachenko, O. P., & Novikova, T. A. (1980). Neurophysiological and structural changes at the basis of effects of transcranial micropolarization. Human Physiology, 6, 381-386.
Vendrame, M., Tracy, M., Das, R., Duffy, F., Loddenkemper, T., & Kothare, S. V. (2010). Clinical correlations of midline spikes in children. Epilepsy & Behaviour, 18, 460-465.